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This paper concerns a relaxation of the assumption of uniform mixture composition in
the interior of sonoluminescence bubbles. Intense temperature and pressure gradients
within the bubble drive relative mass diffusion which overwhelms diffusion driven
by concentration gradients. This thermal and pressure diffusion results in a robust
compositional inhomogeneity in the bubble which lasts several orders of magnitude
longer than the temperature peak or light pulse at the main collapse of the bubble.
This effect has important consequences for control of sonoluminescence, gas dynamics,
sonochemistry, and the physics of light production.

1. Introduction
It is common for sonoluminescence (SL) experiments to be performed with air

and other gas or gas–vapour mixtures. Current SL models assume, if two gases are
present, that the components remain uniformly distributed throughout the bubble.
However, with the extremely large temperature and pressure gradients in the interior
of the bubble, one should be very careful in ruling out the possibility of species
segregation. While the phenomena of diffusive mass flux due to temperature and
pressure gradients are well known (Bird, Stewart & Lightfoot 1960), they are often
neglected due to their small consequence in many applications. The temperature and
pressure gradients that exist in SL can be quite large and the possibility of species
segregation should be addressed.

Thermal diffusion is the tendency for a mixture of gases to segregate due to a
large temperature gradient. This phenomenon was first a theoretical conjecture of the
Chapman–Enskog theory and later confirmed through experimentation (Chapman
& Cowling 1990). In a noble gas mixture molecules of the species with the larger
molecular mass will be driven to the cooler regions. In SL, thermal diffusion might be
expected to play a role during the collapse of the bubble when the centre is extremely
hot and the bubble wall is relatively cool. The temperature gradient in the bubble is
a consequence of the compression heating of the bubble contents and the heat flux
out to the surrounding liquid (Vuong & Szeri 1996). If the mixture is composed of
noble gases, this temperature gradient will drive lighter species toward the centre.

Pressure diffusion is the principle on which the centrifuge operates, where lighter
molecules in a mixture tend to the low-pressure regions. In SL, the accelerating bubble
wall creates a compression wave during the main collapse. As this wave builds, it will
tend to push the light molecules in the mixture to the centre faster than the heavy
molecules. When the compression wave reflects at the origin, pressure diffusion will
tend to push the lighter molecules away from the centre and towards the bubble wall.
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From these arguments it seems that thermal and pressure diffusion will tend to
drive the lighter molecules to the centre prior to the moment of minimum radius. It
remains to be determined what will happen when the compression wave reflects at the
centre because the thermal and pressure diffusion will oppose one another. While the
driving forces behind species segregation clearly exist, it is unclear whether the species
will have time to separate during the rapid bubble collapse. Moreover, conventional
diffusion (driven by concentration gradients) will tend to oppose any compositional
inhomogeneities that may arise by thermal and pressure diffusion. In this paper, we
present a computational study of a bubble composed of a mixture of two noble gases.
We investigate whether or not species tend to segregate under typical conditions of
single and multi-bubble sonoluminescence.

There may be many consequences of species segregation. First there is the issue
of correct numerical simulation of SL bubbles composed of gas mixtures. A number
of computational studies of air bubbles, for example, have neglected the possible
segregation of air into components within the bubble interior. We note that bubbles
are always composed of mixtures because vapour from the liquid will be present.

From the point of view of gas dynamics, species segregation may play an important
role in the formation of shock waves within SL bubbles. If species segregation occurs,
then the mean molecular weight of the mixture will change within the bubble. The
sound speed, which is dependent on molecular weight, will be variable in space due
to compositional inhomogeneities (as well as temperature and pressure variations).
Gradients in sound speed have a large influence on whether compression waves are
able to steepen into shocks (Vuong, Szeri & Young 1999).

Species segregation also affects chemical reactions inside SL bubbles. In single-
bubble SL the argon rectification hypothesis of Lohse and collaborators (Lohse
et al. 1997) has gained considerable acceptance. The hypothesis is that diatomic
species in air undergo dissociation and re-combine into highly soluble products
that subsequently dissolve into the liquid, leaving the inert argon behind. Species
segregation should be accounted for when considering: (i) whether the reactants are
at the centre when the bubble is hot, and (ii) whether the products of reaction are
able to move to the bubble wall where they can be absorbed.

A similar consequence of species segregation is related to cavitation thermometry
(Bernstein et al. 1996). In cavitation thermometry, well understood spectral emissions
from volatile contaminants are used to study temperatures within cavitation bubbles.
Knowledge of where the volatile species go in the gas phase will help in interpreting
such measurements. Similar questions will be of interest in sonochemistry applications.

Finally, a knowledge of compositional inhomogeneities may be essential in under-
standing the light emission process in single-bubble SL. All of these points may lead
to better control of the phenomenon.

2. Formulation
We assume that the bubble is spherical and is composed of a mixture of two

monatomic gases. For the present model we assume that liquid vapour is not present
in the bubble. We make this assumption to avoid the complications caused by
evaporation and condensation at the bubble interface, but shall relax it in future work.
We assume that no mass transport occurs across the bubble interface. Furthermore,
we neglect heat transfer by radiation and make no attempt to model the light
emission. We emphasize that the Navier–Stokes equations remain valid throughout
the bubble collapse because the relative gradients (in temperature, pressure, velocity,
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and concentration) always have length scales much longer than the mean free path
of the molecules (Hirschfelder, Curtiss & Bird 1954).

2.1. Gas dynamics

The conservation of mass for a two-species mixture in spherical Eulerian coordinates
is expressed as (Bird et al. 1960)
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, (2.1)
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Here D/Dt is the material derivative, ρ is the density, ρA is the mass concentration
of species A, r is the radial coordinate, and v is the mass average radial velocity. The
diffusive mass flux of species A(B) relative to the mass average velocity (assuming an
ideal mixture), jA(B), is
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where M is the number-mean molecular weight, MA(B) is the molecular weight of
species A(B), wA is the mass fraction of species A, xA is the mole fraction of
species A, P is the pressure, T is the temperature, kT is the thermal diffusion ratio,
DAB(T , P , xA) is the binary diffusion coefficient, and R is the universal gas constant.
The balance of linear momentum in the radial direction is

ρ
Dv

Dt
= −∂P

∂r
− 1

r2

∂r2τrr

∂r
+
τθθ + τφφ

r
, (2.4)

where the components of the stress in the radial and angular directions are
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and the viscosity, µ, is variable with temperature, pressure, and composition. The
balance of energy is
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where E, the total energy, is the internal energy plus the kinetic energy, and the heat
flux in the radial direction, q, is

q = −k(T , P , xA)
∂T

∂r
+ (hA − hB)jA,

where k is the variable thermal conductivity and hA(B) is the enthalpy of species A(B)
at the local temperature and pressure. We neglect the Dufour energy flux and the
radiant energy flux in the energy equation. The Dufour term is a temperature gradient
caused by the mass flux. A scaling analysis shows this term to be much smaller than
the other terms in the energy balance and it is therefore neglected. A full numerical
calculation including this term confirms it is of minimal consequence.

Following Vuong & Szeri (1996), we cast the equations into Lagrangian form,
where r(a, t) is the radial coordinate at time t of the marker particle that was at
radial position a at t = 0. The Lagrangian form is convenient because it eliminates
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the need to track the moving bubble interface in the computational domain. In this
formulation, the Lagrangian marker particles move with the mass average velocity,
but the composition of the marker particles is not fixed. Hence, the material derivative
D/Dt ≡ ∂/∂t+ v∂/∂r of a field regarded as a function of radius r and time t becomes
simply ∂/∂t computed holding a (the Lagrangian radial coordinate) constant.

We make the equations dimensionless using the initial values of radius R0, density

ρ0, pressure P0, and temperature T0. The velocity scale, v0, is
(
P0/ρ0

)1/2
, the mass flux

scale is ρ0v0, and the energy and enthalpy are scaled by v2
0 . We make the transport

coefficients (µ, k, and DAB) dimensionless by dividing by the values at the initial state.
Using a hat to denote dimensionless Lagrangian variables, the mass conservation
equations become

ρ̂J = 1, (2.6)
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where the Jacobian of the transformation between the the current and reference
configurations, J , is given by
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ĵA = −MAMB

M2
0

1

ReSc

D̂AB

M̂2Ĵ
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∂â

]
.

Here, Z0 is the compressibility in the initial state (equal to 1 for an ideal gas). The
Schmidt number, Sc ≡ µ0/ρ0DAB , is the ratio of the diffusivity of momentum to the
diffusivity of mass and the Reynolds number is Re ≡ ρ0R0v0/µ0. The balance of linear
momentum becomes
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where the stress is
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The energy equation in these variables becomes

∂Ê
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where the radial heat flux is
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with Cp0 the specific heat and Prandtl number Pr ≡ Cp0µ0/k0. We note Cp0T0ρ0/P0 =
γ/ (γ − 1) for a perfect gas where γ is the ratio of specific heats.

2.2. Equation of state and transport properties

An equation of state (EOS) is required to close the gas dynamics problem. Due to
the extreme temperatures and pressures in SL, we avoid the shortcomings of less
sophisticated equations of state and use a van der Waals type model (Vuong et al.
1999). This EOS divides the internal energy into the sum of a cold (T = 0 K) energy,
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a nuclear motion energy, and an electron energy where each of the different energies
were fit to experimental data. The partial pressure is similarly divided. This EOS is
accurate over a very large range of densities and temperatures. It should be noted
that using a standard van der Waals EOS (and assuming constant specific heats) gives
qualitatively the same results as the more complex EOS.

Because we consider a mixture of gases, we also need equations for mixture
thermodynamics. We take a straightforward approach and simply add the partial
pressures and energies of the individual gas components. These mixture relations are
built into the governing equations in the evaluation of the partial molal properties.

The transport properties are functions of concentration, temperature, and pressure.
In order to account for these variations we use the Chapman–Enskog theory with a
Lennard–Jones 12-6 potential and corrections for dense gases and high temperatures.
The details of the equations are given in the Appendix.

We compared results from the Chapman–Enskog equations with our corrections to
some available data at both high temperature and high density and found the equa-
tions to be reasonably accurate (Sengers 1965; Amdur & Mason 1954; Hirschfelder
et al. 1954). Vuong & Szeri (1996) showed that the exact functional form of the
transport properties did not play a major role in the results of SL computations.
We feel the Chapman–Enskog equations provide reasonable results as the equations
predict the proper trends in transport properties with changes in temperature, pres-
sure, and composition. We also feel this is a better approach than previous attempts
where the transport properties were taken to be a function of temperature only. It
should be noted that the Chapman–Enskog theory must be adjusted if the gas ionizes.
Ionization changes the nature of the molecular potential and can drastically affect
the transport properties including a change in the sign of the thermal diffusion ratio
(Chapman & Cowling 1990). Included in the EOS is a computation of the degree of
ionization. We use this computation to check that our transport properties are valid.

2.3. Motion of the liquid

The coupling of the Navier–Stokes equations in the liquid and the gas governs the
response of the bubble to the applied acoustic field. However, due to the spherical
symmetry of the problem, the partial differential equations that govern the liquid mo-
tion can be reduced to a single ordinary differential equation for the bubble radius.
This equation has various forms and the derivations, assumptions, and limitations of
these forms can be found in many references. The form we use, often referred to as
the Gilmore equation (Prosperetti & Lezzi 1986), accounts for compressibility of the
liquid and is

(1−M)RR̈ + 3
2
(1− 1

3
M)Ṙ2 = (1 +M)H +

R

cl,b
(1−M)Ḣ. (2.10)

Here R is the time-dependent bubble radius, dots denote a time derivative, H is the
liquid enthalpy, cl,b is the speed of sound in the liquid at the bubble wall, and M is
the bubble wall Mach number Ṙ/cl,b. This equation is non-dimensionalized with the
same variables as the gas dynamics problem. We use the modified Tait form of the
equation of state for the liquid water, which gives the following relationships:
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Here, Pl is the pressure in the liquid and ρl is the liquid density. The constants
n = 7.15 and B = 3049.13 bar are valid to 105 bar. This equation of state gives the
enthalpy in the liquid as

Hl,b =
n

n− 1

(
Pl,b + B

ρl,b
− Pl,∞ + B

ρl,∞

)
,

Pl,b = Pg − τrr − 4Ṙ

Re lR
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WeR
,

Pl,∞ = (1− Pa sinωt)
PL,o
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.

The subscript l, b refers to properties in the liquid at the bubble wall, subscript l,∞
refers to properties infinitely far from the bubble, Pg is the gas pressure at the bubble
wall from the gas dynamics problem, Re l is the Reynolds number based on the liquid
viscosity, We ≡ RoPo/2σo is the Weber number, σ is the (temperature-dependent)
surface tension, Pa is the sound pressure amplitude ratio, and ω is the sound frequency.

The surface tension is taken to be a function of temperature. In many previous
works, the surface tension was assumed to be a constant or neglected altogether.
Assuming a constant value is not quite correct. Upon collapse, the temperature of the
bubble wall can exceed the critical point very briefly, a condition where there is no
longer a clearly defined liquid–gas interface and the surface tension is zero. To neglect
surface tension is also inaccurate as the surface tension tends to smooth the bubble
collapse before the wall temperature gets much above the initial temperature (Yuan
et al. 1998). As a better approximation we use a surface tension that is variable with
temperature and goes to zero at the critical point. The empirical equation for liquid
water that we use is (Carey 1992)

σ = 235.8

(
1− T

Tc

)1.256 [
1− 0.625

(
1− T

Tc

)]
,

where T is the temperature of the interface, Tc is the critical temperature, and σ is in
units of mN m−1.

2.4. Temperature of the bubble interface

Heat transfer between the bubble and the surrounding liquid is of major importance
to the gas dynamics at the collapse (Vuong & Szeri 1996; Vuong et al. 1999). In order
to account for heat transfer leaving the bubble, one must solve the energy equation
in the liquid and match the temperature and heat flux at the gas–liquid boundary.
The energy balance in the liquid in dimensional, Eulerian variables is
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)
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where ρl , kl , and Cpl are the density, thermal conductivity, and specific heat of the
liquid. We assume that the thermo-physical properties do not vary with temperature.
Following Eller & Flynn (1965) and Fyrillas & Szeri (1994) we transform the space
coordinate to a dimensionless Lagrangian boundary layer coordinate, s ≡ √Pe(r3 −
R3)/(3R3

0), and time into a nonlinear time τ ≡ ∫ t
0
R(t)4 dt. The Péclet number, Pe ≡

Re lPr l , is based on the liquid properties. In terms of the temperature difference,
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θ ≡ T − T∞, the energy equation is simplified to the linear heat conduction equation

∂θ

∂τ
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∂2θ

∂s2
. (2.12)

Because the interface cannot store thermal energy, the dimensionless heat flux out of
the bubble, ĝ(τ), satisfies
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We regard the heat flux as known from the gas dynamics, and append two additional
conditions θ(τ,∞) = 0 and θ(0, s) = 0.

2.5. Numerical method

We solve the governing partial differential equations in the gas with a spectral collo-
cation (or pseudospectral) method. The details of collocation methods can be found
in many references such as Canuto et al. (1988) and Boyd (1989). We approximate the
fields of interest (i.e. r(a, t), v(a, t), T (a, t) . . .) by projecting them into an N-dimensional
function sub-space spanned by Chebyshev polynomial basis functions. Explicitly, this
approximation is

X(a, t) ≈
N∑
n=0

bn(t)Tn(a), (2.14)

where X(a, t) is a field that is a function of radius (in the reference configuration)
and time, bn(t) are the time-dependent Chebyshev coefficients, and Tn(a) are the
Chebyshev polynomials. Spectral collocation methods satisfy the governing equations
exactly at certain radial locations, the collocation points, which we selected to be

ak = cos
π(k −N)

2N + 1
, k = 0, 1, . . . , N.

The Chebyshev polynomials serve as the interpolating functions between these points.
To satisfy exactly the conditions at the centre related to the assumption of spherical

symmetry, we expand the spatial quantities (i.e. temperature, pressure, mole fraction,
etc.) in the even polynomials T2n, and vector quantities (i.e. velocity and fluxes) in
odd polynomials T2n+1. The boundary conditions at the bubble surface are satisfied
by forcing a match between the liquid and gas equations.

As a practical matter, we change adaptively the number of Chebyshev modes in
the numerical simulation. In the slow expansion and most of the collapse, only about
six Chebyshev modes are necessary. As the bubble collapses and the temperatures
and velocities increase, more modes are needed. We follow Kamath & Prosperetti
(1989) and monitor the ratio of the first and last Chebyshev coefficient of all the
fields. If the maximum ratio is greater than 10−5 we add two more Chebyshev modes.
If the ratio is less than 10−7 we remove two Chebyshev modes. If these prescriptions
are made more conservative, there is little effect on the computations other than
increasing the computation time. During the main collapse, a maximum of 16 to
20 modes is typically necessary. Due to the small number of modes we use matrix-
vector multiplication to evaluate spatial derivatives rather than making use of the
fast transform and recursion relations.

Although the typical runs involve a fairly small number of modes, we emphasize
that the numerical algorithm is capable of tracking the evolution of a strong shock, if
one occurs. A shock can be artificially promoted, for example, in the computation of
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a pure argon bubble where Pa = 1.3 and R0 = 4.5 µm but the ratio of specific heats is
set artificially low at γ = 1.2. Such a low value of γ leads to diminished compression
heating of the bubble contents; this promotes shock formation by the mechanism
discussed in Vuong et al. (1999).

We march the equations forward in time with a second-order-accurate predictor-
corrector method. The time step is adaptively controlled by monitoring the diffusion
coefficients, bubble radius, and velocities. In linear advection and diffusion equations,
stability is governed by c∆t/∆x and ν∆t/∆x2 respectively (c and ν are a wave speed
and diffusion coefficient). While it is not feasible to determine stability criteria for
nonlinear equations we adjust the time step to hold constant the stability discriminants
of the related linear problems. Using scaling arguments it is straightforward to show

that the time step should vary with 1/R, µ̂, k̂, and D̂ab/J . During the expansion, we
reduce the time step to account for the large radius. During the collapse, we reduce
the time step to account for increases in the diffusion coefficients due to temperature
and pressure increases and the large wave speeds from the rapid bubble motions. The
time step is also adjusted whenever we add or remove Chebyshev modes.

The liquid temperature equation is solved in a similar fashion as the gas dynamic
equations. In order to handle the semi-infinite domain, the liquid temperature is
approximated with rational Chebyshev polynomials (Boyd 1987). Explicitly, this
approximation is

θ(s, t) ≈
M∑
n=0

cn(t)TLn(s), (2.15)

where cn(t) are the time-dependent rational Chebyshev coefficients, and TLn(s) are the
rational Chebyshev polynomials. The collocation points in the liquid are located at

sk = L cot2

[
π(2k + 1)

2(2N + 2)

]
, k = 0, 1, . . . , N.

Rational Chebyshev polynomials are related to Chebyshev polynomials by the
following relation:

TLn(y) ≡ Tn(x),

where the relation between x and y is

y ≡ L(1 + x)/(1− x)

and L is the map parameter. For the diffusion equation, choosing the map parameter
to be equal to the penetration depth works well. For our problem the map parameter
is 0.1.

The liquid temperature equation is marched forward with a first-order implicit
method. An implicit method is necessary because the fine spacing of the points near
the bubble wall places draconian restrictions on time steps for explicit methods. A
first-order method is used because the liquid equation is written in nonlinear time,
and therefore the integration time step constantly changes.

As with the gas dynamic equations, the number of modes is adaptively changed
throughout the calculation. Again, approximately six modes is adequate through the
slow bubble motions, and 20 modes is adequate at the time of collapse.

Many standard tests were undertaken for stability and convergence; we increased
and decreased the resolution in both time and space. We tried various criteria for
adding and removing Chebyshev modes. We checked the mass transfer equations by
ensuring the results were not dependent on which species was labelled A or B. We



Mixture segregation in sonoluminescence 211

40

30

20

10

5 10 15 20 25 30 35

Time (µs)

R
ad

iu
s 

(µ
m

)

Figure 1. Radial response of the bubble to one cycle of the applied acoustic field. The bubble is
He–Ar (10% mass He) forced at a pressure amplitude of 1.3.

also monitor global conservation of mass and energy throughout the calculations.
These global error estimates are always a fraction of a percent. Finally we also solved
the gas dynamics equations with a second-order-accurate finite difference scheme. The
spectral method produced nearly identical results much more efficiently.

3. Results
The parameter space for sonoluminescence is quite large. The purpose of the

present work is to investigate the phenomenon of species segregation and not to
undertake an exhaustive study of the parameter space. The first case we present is
a detailed investigation of species segregation in typical single-bubble SL. We then
show some trends in single-bubble SL by varying the driving pressure amplitude and
the composition of the gas in the bubble. The second case we present has parameters
representative of multi-bubble SL. The latter case demonstrates that the species
segregation effect is present in multi-bubble and sonochemistry applications as well.

3.1. Single-bubble sonoluminescence

We begin by investigating a representative single-bubble SL case with the following
parameters: Pl,o = 101 kPa, R0 = 4.5 µm, T0 = 300 K, P0 = Pl,o + 2σ0/R0, PA = 1.3,
and ω/2π = 26.5 KHz. The bubble contains a helium–argon mixture composed of
10% helium by mass (52.58% helium on a mole basis). The radial response of this
bubble to one cycle of the applied acoustic field is shown in figure 1. Hereafter, we
shall focus on the first main collapse of the bubble which occurs at approximately
20.6 µs from the beginning of the cycle. In figure 2 we show the evolving radial
position of selected marker particles in the bubble interior on two time scales which
differ by two orders of magnitude. Time is shifted in this figure to put zero at the
point of minimum radius; the marker particles were evenly spaced in the reference
configuration. On the 100 ns time scale the collapse is quite sharp but on the 1 ns time
scale, the bubble smoothly reaches the minimum radius and expands.

In figure 3 we show the temperature history of the bubble centre on the same two
time scales as figure 2. The temperature rises an order of magnitude on a 1 ns time
scale to a maximum of approximately 42 000 K. Figures 2 and 3 are demonstrations
that the bubble motion at minimum radius and the temperature peak occur on a
time scale of several hundred pico-seconds. On the 100 ns scale both the dynamic and
thermal response of the bubble appear nearly singular.
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Figure 2. Radial response of the bubble to the applied acoustic field at the main collapse on two
time scales. The marker particles were evenly spaced in the reference configuration. The outermost
marker particle shows the evolving position of the interface. The bubble is He–Ar (10% mass He)
forced at a pressure amplitude of 1.3.
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Figure 3. Temperature of the centre of the bubble as a function of time at the main collapse. The
bubble is He–Ar (10% mass He) forced with a pressure amplitude of 1.3.
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Figure 4. Composition history of marker particles at the centre and at the bubble wall as a function
of time. The wall particle reaches the lowest mole fraction of helium while the centre reaches the
maximum. The bubble is He–Ar (10% mass He) forced with a pressure amplitude of 1.3.

In figure 4 we show the helium mole fraction at the bubble wall and centre of
the bubble as a function of time. The same two time scales from the previous two
figures are used here. Close examination reveals that compositional inhomogeneities
develop much more slowly than the peak dynamic and thermal fields. Over the time
scale of the peak dynamic and thermal response the composition field in the bubble
is nearly a material field. The species segregation is driven by the slow build up and
release of heat throughout the collapse and not by the short burst of energy supplied
to the bubble contents at the point of minimum radius. One observes that the mole
fraction of helium at the bubble wall decreases to a minimum slightly before t = 0
then increases. In contrast, helium continues to accumulate at the centre for some
time after the collapse and then eventually the centre becomes slightly argon rich
during the expansion. We note that at the extreme moment of the collapse (t = 0)
the helium fraction monotonically decreases from the centre to the wall.

An alternative view of the composition field is provided in figure 5. In this figure
we show snapshots of the composition field within the bubble at intervals of 2 ns with
the gray scale indicating the mole fraction of helium. Black indicates argon rich and
white indicates helium rich. Upon close inspection we see that the argon is heavily
concentrated in a thin region near the wall up to the time of minimum radius. As the
bubble expands, the helium continues to move to the centre while the sharp argon
‘shell’ relaxes by diffusion. We remark that at the main collapse, the mole fraction of
the argon-rich outer shell of gas would be slightly different as a consequence of gas
transfer into the water. A mass transfer calculation we performed shows this to be a
small effect, however. Mass flux of inert gas into the liquid is therefore neglected in
the present work.

A careful examination of the terms in the diffusive mass flux shows which gradients
drive the species segregation. Before the final stages of the main collapse a negative
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Figure 5. Composition field and radius of the bubble around the time of minimum radius. The
gray scale is set so that pure black is the minimum in mole fraction of helium that occurred in this
case and pure white is the maximum. A uniformly gray disk would indicate uniform composition.
The frames are 2 ns apart from −8 to 24 ns from left to right, then down. The bubble is He–Ar
(10% mass He) forced with a pressure amplitude of 1.3.

temperature gradient and a positive pressure gradient grow in the bubble. The centre
heats by compression, while the bubble wall remains relatively cool due to rapid heat
transfer out of the bubble. Also, as the wall accelerates to the minimum radius a
compression wave develops at the wall. Both forces act in the same direction and
concentrate the helium at the centre. For this particular gas mixture and pressure
amplitude, the thermal diffusion causes about 80% of the species segregation up to
this point in time.

As the bubble approaches its minimum radius, the bubble wall decelerates and the
compression wave proceeds towards the centre. As the compression wave reflects at
the centre, the pressure diffusion vector changes sign and there is a strong tendency
for the helium to leave the centre of the bubble. The thermal diffusion still drives
the helium toward the centre. While the pressure diffusion term is dominant over
the thermal diffusion when the compression wave reflects at the origin, the helium
remains in the centre because the pressure diffusion term is too short-lived to be of
much consequence.

Upon expansion of the bubble after the collapse, the compression wave dies
very quickly. The temperature field begins to relax on the same time scale that it was
created. The negative temperature gradient that persists after the collapse continues to
concentrate the helium in the centre for some time. As the bubble expands, the contents
cool and the helium begins to leave the centre. Later in time the rapid expansion
causes the temperature at the centre to become lower than the initial temperature
(about T̂ = 0.6) and the bubble wall returns to the far-field liquid temperature. The
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temperature gradient in the bubble thus changes sign and thermal diffusion drives the
helium to the relatively warm wall. As the bubble reaches the next radius maximum,
the bubble returns to essentially uniform temperature and species composition.

The development of the concentration field may be clarified through scaling argu-
ments. From the mass transport equation, it is straightforward to show the time scale
for mass diffusion (in dimensional terms) varies as R2/Dab(T ). From kinetic theory,
we know Dab ∝ T 3/2/p; hence ρDab ∝ T 1/2, or Dab ∝ R3T 1/2. Thus, the diffusion time
scale is proportional to 1/(RT 1/2). When R is small and T is large at the collapse, the
product RT 1/2 has a value not much different from its value at ambient conditions
(0.5 µs). In the early part of the collapse, the time scale for bubble motions (i.e. R/Ṙ(t))
is of the same order as the mass diffusion time scale. The relatively slow build up of
temperature and pressure gradients prior to the main collapse therefore has significant
time to drive the diffusive mass flux. The peak thermal and pressure response occurs
on a much more rapid time scale. As the bubble reaches minimum radius, the time
for the compression wave to reflect at the bubble centre is approximately 100 ps. The
compression wave acts very briefly and only creates a small wiggle in the composition
fields (visible in figure 4).

The peak in thermal diffusion also occurs on a very rapid time scale compared to the
time scale for mass transfer. Thus, the composition field does not have time to react
to the most extreme temperature gradients. It is worth emphasizing that the thermal
diffusion term is proportional to the relative temperature gradient. Therefore, the
absolute temperature is not the important quantity, but rather the ratio Tcentre/Twall .
One should note that while the time scale of the peak in the relative temperature
gradient is very rapid, a significant relative gradient exists for a much longer time.

In the interest of comparison, we study the same bubble but with the diffusive mass
flux disallowed. It is interesting to note that the peak temperature of the segregating
case is virtually identical to the non-segregating case. The total energy at the centre
(internal energy) is higher in the segregating case because the diffusive mass flux
carries the higher enthalpy helium into the centre. Helium has a higher enthalpy than
argon (based on mass) as a consequence of its lower molecular mass. The specific
heat in the segregating case is also higher in the centre due to the increase in helium
concentration at the centre. These two effects compensate one another such that the
temperature is fairly insensitive to whether or not diffusive mass flux is included. We
note no discernible difference in the overall bubble dynamics between the two cases.

Upon comparison, the segregating and non-segregating bubble wall temperatures
are very similar as well. This is peculiar at first glance because the thermal conductivity
near the wall is quite different in the two cases. In the segregating case the thermal con-
ductivity at the wall is (briefly) lower because this zone is argon rich. Argon has a much
lower thermal conductivity than helium due to the large difference in molecular mass.
This has little effect on the wall temperature for all the cases we investigated. It appears
that the bubble dynamics drives the diffusive mass transfer, but the resulting species
segregation has little effect on the bubble dynamics and temperature field. We note
that these observations hold true for all the cases that we examined with noble gases.
It is unknown whether this observation will apply to diatomic or polyatomic species.

As a final note on this particular case, the EOS includes a computation of the
degree of ionization. For the most extreme conditions we encounter, the gas has ap-
proximately 10−4 free electrons per atom. Therefore, neglecting ionization is consistent
with our computation of the transport properties.

Different pressure amplitudes show similar qualitative behaviour with quantitative
differences in the peak temperatures and amount of species segregation. We computed
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the same helium–argon bubble forced at pressure amplitudes of 1.1 and 1.2. Lower
pressure amplitudes result in lower temperature and pressure gradients and therefore
less species segregation. Also, the percentage of species segregation attributable to
pressure diffusion increases with pressure amplitude.

Mixtures of different noble gases behave similarly. We computed bubbles com-
posed of xenon–helium and argon–xenon at pressure amplitudes of 1.1, 1.2, and 1.3.
The amount of species segregation at a given forcing amplitude depends on the
thermal diffusion factor and the difference between the mole and mass fractions (i.e.
molecular weight difference). At pressure amplitudes of 1.1 the helium–argon bubble
has about 10% more maximum species segregation than the helium–xenon bubble.
This difference is due to the larger relative temperature gradient and larger thermal
diffusion factor (for the mole fractions we selected) in the helium–argon bubble. At
pressure amplitudes of 1.3 the xenon–helium bubble has approximately 15% more
segregation than the helium–argon bubble. At this pressure amplitude, the pressure
gradient is similar between the two gas mixtures; however, the pressure diffusion
term is larger in the helium–xenon case because of the larger difference in molecular
weight of the species. The thermal conductivity of the gas is also important since the
relative temperature gradient between the bubble wall and the centre drives species
segregation. The qualitative behaviour of the composition field is very similar for
these other mixtures, with differences in the amount of species segregation and the
relative role of pressure and temperature diffusion.

3.2. Multi-bubble sonoluminescence

Finally, we consider a case representative of multi-bubble SL. We use the experimental
inference of bubble radius and pressure amplitude from Gaitan et al. (1992) to
make the connection between single- and multi-bubble SL. The case we investigate
has the same parameters as the single-bubble case we examined in detail except
that R0 = 17.5 µm. We note that such a bubble, driven at the elevated amplitudes
we consider below, is known to be shape unstable (see Holt & Gaitan 1996 and
Hilgenfeldt, Lohse & Brenner 1996). Nevertheless a spherical calculation is instructive
because it demonstrates that the species segregation occurs even over the length scales
of these much larger bubbles.

The maximum temperature at the bubble centre for the multi-bubble case is
22 000 K which occurs when the bubble radius is near its minimum of 3.2µm. The
maximum difference in helium mole fraction between the wall and centre is 0.23 and
occurs 4 ns before the time of minimum radius. This should be compared to figure 4
where the maximum of 0.27 occurred about 0.6 ns before the time of minimum radius.
The pressure diffusion is less important in this example than the single-bubble case,
owing to the milder collapse.

The amount of species segregation in the multi-bubble case is still significant
even though the bubble collapse is milder than the single bubble. While the peak
temperature is lower than the single-bubble case, the ratio Tcentre/Twall is higher in
the multi-bubble example. The relative temperature gradient is larger due to the
increase in the liquid Péclet number with initial bubble radius. The bubble wall
reaches a maximum of 1200 K in the multi-bubble example as opposed to 4600 K
in the single-bubble example. We see that the maximum temperature of the centre
is about twice as large for the single-bubble example but the wall temperature is
almost four times greater. We also see that the ratio of the mass diffusion time scale
to bubble motion time scale is somewhat lower in the multi-bubble case around the
time of collapse. Thus, the thermal diffusion is stronger and has more time to act
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in the multi-bubble case. The compression wave proceeding the collapse is much
milder in the multi-bubble case than in the single bubble, resulting in lower pressure
diffusion in the multi-bubble case. Therefore, with the larger bubble we still get very
significant thermal diffusion (more so than the single-bubble case) but very little
pressure diffusion.

3.3. Mass exchange equilibrium with the liquid

One potential consequence of species segregation is that the mole fraction of a
dissolved gas mixture in the liquid may not equal the mole fraction of the gas inside the
bubble. Because some species are at higher concentrations at the wall during part of
the cycle, these components could be preferentially absorbed in the liquid. To address
this issue we make use of the well-known threshold condition for rectified diffusion
(Eller & Flynn 1965; see also Fyrillas & Szeri 1994 and Vuong, Fyrillas & Szeri 1998):

CA,∞
CA,s,ref

=

∫ T

0

R4(τ)PA(τ)dτ∫ T

0

R4(τ)dτ

. (3.1)

Here CA,∞ is the far-field concentration of species A, CA,s,ref = Pref /k(T ), k(T ) is
Henry’s constant, and PA is the partial pressure of species A at the bubble wall.

In order to determine whether the species segregation affects the mass exchange
equilibrium between the bubble and the liquid, we compare the results of this equation
for a segregating and non-segregating mixture. For an ideal mixture the partial
pressure of one species is given by PA = xAP . For a non-segregating mixture, xA is
constant and may be pulled out of the integral. We compare the threshold integral
using the time-varying mole fraction of the segregated species at the wall with that
obtained with xA constant. A difference in these integrals indicates that species
segregation affects the bubble equilibrium.

For the cases discussed in this paper, there is no difference when we compute the
integral using the variable mole fraction or the constant initial mole fraction. Even
though the species do segregate significantly, the time spent separated is relatively
short compared to the time of the entire cycle. Also, the separation occurs when the
radius is smallest and thus when the radius is taken to the fourth power, this part of
the cycle contributes less to the total integral.

These results indicate that the relationship between mole fraction of the dissolved
species and the mole fraction of the gas in the bubble can be determined without
taking into account species segregation. This does not mean that the mole fraction
of the dissolved gas is equal to the mole fraction of the gas in the bubble; these
can be very different. When determining the mole fraction of the gas in the bubble,
one must take into account the difference in DC∞/M (Lohse & Hilgenfeldt 1997),
but the assumption of a uniform mixture for these calculations appears to be a good
approximation. Species segregation may play a role for the absorption of species that
are short lived due to chemical reactions. The species may only exist for a brief time
and never be exposed to the bubble wall.

4. Conclusions
We made use of the tools of computational fluid dynamics to study the consequences

of diffusive mass flux in a sonoluminescence bubble containing a monatomic gas
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mixture. Principally by the mechanism of thermal diffusion, i.e. diffusion driven by a
temperature gradient, the species in a gas mixture partially segregate over a time scale
much longer than the time scale of the temperature peak at the bubble centre. Mass
diffusion driven by a pressure gradient, while numerically dominant for a short time,
is too short-lived to have much impact on the composition field of the bubble interior.
The temperature gradient responsible for most of the species segregation develops as
a consequence of both compression heating of the bubble contents and heat flux to
the surrounding liquid during the early and middle stages of the main collapse.

The species segregation takes the form of a higher fraction of the light species near
the bubble centre at the main collapse, whereas the cooler region near the bubble wall
is richer in the heavier species. The extent of species segregation increases with the
amplitude of the acoustic drive, and with dissimilarity of the species present in the
mixture. We note that with more complex molecules, the sign of the thermal diffusion
coefficient depends on both the size and the weight of the molecule.

Because the light species migrates to the centre at the main collapse, there is a
greater concentration of internal energy at the bubble centre when the diffusive mass
flux is taken into account, rather than neglected. However, the temperature field is
not significantly different in either case. Similarly, species segregation has little effect
on the mass exchange equilibrium between the bubble and the surrounding liquid.

In summary, we have shown that there is significant species separation in sono-
luminescence bubbles. This will likely play a role in further explanation of the light
emission mechanism (Moss et al. 1999), and will certainly be important to the chem-
istry and applications of sonoluminescence.
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Science Foundation. The authors would like to thank David Young of Lawrence
Livermore National Laboratory for providing us with the equation of state and for
a useful discussion of equations of state for mixtures. In addition we would like to
thank Ken Suslick and Werner Lauterborn for their advice on typical multi-bubble
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Appendix. Transport properties
The equations for the transport properties are taken from the Chapman–Enskog

theory with corrections for high temperature and pressure. Those we used are taken
from Reid, Prausnitz & Poling (1987), Hirschfelder, Curtiss & Bird (1954) and
Chapman & Cowling (1990).

A.1. Transport properties of the mixture

The viscosity and thermal conductivity of a single-component gas are

µ× 107 = 266.93

√
MT

σ2Ω2,2(T ∗)
, (A 1)

k =
15

4

R

M
µ, (A 2)

where M is the molecular weight, T is the temperature in Kelvin, σ is the collision
diameter in Angstroms, Ω2,2(T ∗) is the collision integral using the Lennard–Jones
12-6 as tabulated in the Appendix (Table I-M) of Hirschfelder et al. (1954), T ∗ is
the reduced temperature Tk/ε, and ε/k is the potential parameter in Kelvin. The
viscosity, µ, is given in g cm−1 s and thermal conductivity, k, in cal cm−1 s K.
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Rather than using the lengthy mixture equations for viscosity and thermal conduc-
tivity, we use the mixing rules of Chung (see Equations 9-5.24 to 9-5.40 in Reid et al.
1987) to get mean effective molecular parameters for the single-component equations.
The mean values (denoted by the subscript m) are used in the single-component
equations to give properties for the mixture. The equations are

σij = (σiσj)
1/2, (A 3)

εij

k
=

(
εi

k

εj

k

)1/2

, (A 4)

Mij =
2MiMj

Mi +Mj

, (A 5)

σ3
m =

∑
i
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xixjσ
3
ij , (A 6)

εm
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3
ij
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, (A 7)

T ∗m = Tk/εm, (A 8)

Mm =

∑
i

∑
j

xixj(εij/k)σ
2
ijM

1/2
ij

(εm/k)σ2
m

, (A 9)

where xi is the mole fraction of the ith species. This mixing rule is accurate to
within 5% for ordinary conditions, although it has not been tested at the extreme
temperatures and pressures encountered in SL.

The binary diffusion coefficient for a low-density gas is given as

D12 = 0.0026280

√
T 3/M12

pσ2
12Ω

1,1
12 (T ∗12)

, (A 10)

where p is the pressure in atmospheres and D12 is given in cm2 s−1. The equations for
the low-density viscosity, thermal conductivity, and binary diffusion coefficients from
the Chapman–Enskog theory are well known and are quite accurate for monatomic
gases at reasonable temperatures using a Lennard–Jones 12-6 potential (Hirschfelder
et al. 1954; Chapman & Cowling 1990).

A.2. Correction for high densities

To correct for high density we use Enskog’s correction for a dense gas of rigid
spheres. These equations are derived for a single-component fluid, but we simply
assume that the gas mixture behaves as a single-component fluid with the mean
effective parameters. This is a very crude correction but it does predict the proper
trends in the properties as the density increases. The equations are

µ/µ0 = b0ρ̄(1/y + 0.8 + 0.761y), (A 11)

k/k0 = b0ρ̄(1/y + 1.2 + 0.755y), (A 12)

y =
p

ρ̄R T
− 1, (A 13)
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where the subscript 0 means the low-pressure value (as computed from above), ρ̄ is the
molar density, and b0 is the excluded volume 2/3πNσ3, whereN is Avogadro’s number.
We compute y, the compressibility minus one, with the following approximation:

y = (b0ρ̄) + 0.6250(b0ρ̄)2 + 0.2869(b0ρ̄)3 + 0.115(b0ρ̄)4. (A 14)

The binary diffusion coefficient for a mixture is given from the dense gas theory by

D12/D
0
12 = 1/Y12, (A 15)

Y12 = 1 + 2
3
n1σ

3
1

(
σ1 + 4σ2

4σ1 + 4σ2

)
+ 2

3
n2σ

3
2

(
σ2 + 4σ1

4σ1 + 4σ2

)
, (A 16)

where n1(2) are the number densities. The method we use provides results very close
to those obtained with the full dense gas mixture theory but our method is more
computationally efficient.

A.3. Correction for high temperatures

To account for high temperature we use a temperature-dependent collision diameter
as computed from the equation of state. This correction simulates the effect of
temperature on atomic collisions by allowing the molecules to come into closer contact
upon collision. We use the equation of state to extract a temperature-dependent sphere
diameter in the following way. We set the thermal kinetic energy equal to the T = 0
energy from the EOS (i.e. kT = E (T = 0, ρ)) to determine the density at close packing
for a particular temperature. We relate this density to a sphere diameter assuming
tightly packed spherical molecules. This temperature-dependent sphere diameter is
then used in the Chapman–Enskog equations. The collision diameter data were fitted
with the following equations, in the temperature range 200–200 000 K:

σAr = −5412.661 + 3.103/T − 627.974/T 0.01 + 6043.671/T 0.001, (A 17)

σHe = −513.494− 4.187/T − 30.767/T 0.01 + 548.282/T 0.001, (A 18)

σXe = −6181.519 + 5.999/T − 720.213/T 0.01 + 6905.133/T 0.001, (A 19)

where σi is in Angstroms.
The equation for thermal diffusion is not included here because it is quite lengthy.

We used the high-pressure thermal diffusion equation for a binary gas mixture (see
Section 16.9 in the 2nd edition of Chapman & Cowling). It should be noted that the
low-pressure thermal diffusion equation (for example, Equation 8.2-50 in Hirschfelder
et al. 1954), gives very similar results.
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